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ABSTRACT 

Well-posedness of difference scheme for the inverse problem of reconstructing the 
right side of a parabolic equation 
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where ( , )u t x  and ( )p t  are unknown functions, ( , ), ( ), ( ), ( )f t x q x x tϕ ψ  and 

( )tρ  are given functions, ( ) 0a x δ≥ >  and 0σ >  is a sufficiently large number. 

Numerical methods for estimation of constant terms of coercive stability estimates are 
described. 
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1. INTRODUCTION 

The inverse problem of reconstructing the right hand side of a 
parabolic equation has been considered in many papers (see Borukhov and 

Vabishchevich (2000), Samarskii and Vabishchevich (2007) and the references 

therein). The inverse heat conduction problems deal with the determination of 
the crucial parameters in analysis such as determination of boundary 

conditions, the internal energy source, thermal conductivity, the volumetric 

heat capacity, etc. They have been widely applied in many designs and 

manufacturing problems especially in which direct measurements of surface 



Allaberen Ashyralyev & Abdullah Said Erdogan 

 

140 Malaysian Journal of Mathematical Sciences 

 

 

conditions are not possible. The formulation of numerical methods and 
literature review is given by many researchers. In order to determine unknown 

conditions, these methods have often been combined with the optimization 

algorithms such as regularization technique. 
 

The theoretical statements on well-posedness of the inverse problem 

with one variable has been considered in many theoretical papers (Ivanchov 

(1995), Choulli and Yamamoto (1996, 1999) and Ashyralyev (2010)). The 
generic well-posedness of a linear inverse problem is studied for values of a 

diffusion parameter and generic local well-posedness of an inverse problem is 

proved in Choulli and Yamamoto (1996, 1999) where the unknown control 

function is in space variable. In Borukhov and Vabishchevich (2000) and 
Samarskii and Vabishchevich (2007), the well-posedness of the algorithm for 

the numerical solution of the identification problem with time variable is 

investigated in maximum norm. In Ashyralyev (2010), the well-posedness of 
problem of determining the parameter of a parabolic equation is considered in 

Hölder spaces. 
 

A homogenous plate with l  thickness and constant thermal properties 

with insulated boundaries heated by a plane surface heat source of ( )p t  

located at a specified position x x∗=  can be formulated as a parabolic 

equation (Liu (2008) and Yang (1998)). Also, in the process of 

transportation, diffusion and conduction of natural materials, the following heat 

equation is induced (Yan et al. (2008)) 
 

2
max( , ; ), ( , ) ( , ] ,tu a u f t x u t x o t− ∆ = ∈ × Ω  

 

where u  represents state variable, a  is the diffusion coefficient, Ω  is a 

bounded domain in 
d
ℝ  and f  denotes physical laws, which means 

source terms here. 

 

 

2. FIRST ORDER OF ACCURACY DIFFERENCE 

SCHEMES AND THE WELL-POSEDNESS 

We consider the inverse problem of reconstructing the right side of a 

parabolic equation with nonlocal conditions 
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where ( , )u t x  and ( )p t  are unknown functions, ( , ), ( ), ( ), ( )f t x q x x tϕ ψ  

and ( )tρ  are given functions, ( ) 0a x δ≥ >  and 0σ >  is a sufficiently large 

number. Here x∗  is the interior location of a thermocouple recording the 

temperature measurement. Assume that 

 

(a) ( )q x  is a sufficiently smooth function, 

(b) (0) ( ) 0,q q l′ ′= =  

(c) ( ) 0.q x∗′ ≠  

 

The first order of accuracy difference scheme for the 
approximate solution of the problem (1) 
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here 1 00,sq q q≠ =  and 1M Mq q −=  are assumed is constructed. 
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 To formulate our results, we introduce the Banach space 
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Let A  be a strongly positive operator. With the help of A we introduce the 

fractional spaces ( , ), 0 1,E E Aα α< <  consisting of all Eυ ∈  for which the 

following norms are finite 
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Throughout the article constants are indicated by ( , , )M α β …  where the 

constant depends only on , , .α β …  Then, the following theorem on well-

posedness of problem (2) is established. 

 

Theorem 1. For the solution problem (2), the following coercive 
stability estimates 
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The proof of theorem is based on the inequality  
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and the following theorems. 
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Theorem 2. The Following coercive stability estimate 
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Theorem 3. For 
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3. NUMERICAL RESULTS 

For the numerical verification of our algorithm, we assume that 

the diffusion coefficient 1, ( ) 1a q x= =  and ( , ) 0.f t x =  We consider the 

following problem 
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The exact solution of the given problem is 2 41

4
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and of the control parameter ( )p t  is 6 .t−  
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First, applying the Rothe difference scheme (2), 
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is constructed. 

 

We need to calculate the approximate value of the control parameter 
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The difference scheme (7) can be arranged as 
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To solve the resulting difference equations, we again apply the iterative 

method given in (9). 
 

Now, we will give the results of the numerical analysis. The numerical 

solutions are recorded for different values of N and M and k
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the numerical solutions of these difference schemes at ( ),k n
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TABLE 1: Error analysis for ( )p t . 

 

 N=30 N=60 N=90 

Rel. Error 0.0617 0.0286 0.0156 

 

Table 2 gives the error analysis between the exact solution and the solutions 

derived by difference schemes. Table 2 constructed for 30,60N M= =  and 

90  respectively. For their comparison, the error is computed by 
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TABLE 2: Error analysis for the exact solution ( , ).u t x  

 

Method N=M=30 N=M=60 N=M=90 

1st order accuracy d.s 0.0401 0.0200 0.0130 

 

The obtained results also show that the numerical solutions are stable and 

converge to the exact solution. A similar approach can be applied to general 

boundary conditions. High order accuracy difference scheme can be 

investigated by using the operator approaches. 
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